Calculo Diferencial
Esta función es constante, para cualquier punto de su dominio vale 5 (por eso f(x+h)=5). Nótese el último paso, donde h tiende a cero pero nunca lo alcanza. Si pensamos un poco, observaremos que la derivada además de ser la pendiente de la recta tangente a la curva, es a la vez, la recta secante a la misma curva.
Ejemplo 2: Consideremos la gráfiica de . Esta recta tiene una pendiente igual a 2.0 en cada punto. Utilizando el cociente mostrado arriba (junto a los conceptos de límite, secante, y tangente) podremos determinar las pendientes en los puntos 4 y 5:
Por tanto, se deduce que el valor de la función derivada de una recta es igual a la pendiente de la misma
|
No hay comentarios:
Publicar un comentario